Empirical Regression Method for Backward Doubly Stochastic Differential Equations
نویسندگان
چکیده
منابع مشابه
Stochastic PDEs and Infinite Horizon Backward Doubly Stochastic Differential Equations
We give a sufficient condition on the coefficients of a class of infinite horizon BDSDEs, under which the infinite horizon BDSDEs have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations. A probabilistic interpretation for solutions to a class of stochastic partial differential equations...
متن کاملNumerical scheme for backward doubly stochastic differential equations
We study a discrete-time approximation for solutions of systems of decoupled forward-backward doubly stochastic differential equations (FBDSDEs). Assuming that the coefficients are Lipschitz-continuous, we prove the convergence of the scheme when the step of time discretization, |π| goes to zero. The rate of convergence is exactly equal to |π|1/2. The proof is based on a generalization of a rem...
متن کاملNumerical Method for Backward Stochastic Differential Equations
We propose a method for numerical approximation of Backward Stochastic Differential Equations. Our method allows the final condition of the equation to be quite general and simple to implement. It relies on an approximation of Brownian Motion by simple random walk.
متن کاملForward-Backward Doubly Stochastic Differential Equations with Random Jumps and Stochastic Partial Differential-Integral Equations
In this paper, we study forward-backward doubly stochastic differential equations driven by Brownian motions and Poisson process (FBDSDEP in short). Both the probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs in short) and stochastic Hamiltonian systems arising in stochastic optimal control problems with random jum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2016
ISSN: 2166-2525
DOI: 10.1137/15m1022094